
CS2910 Fall 2014, Dr. Yoder Page 1 of 3

CS2910 Lab 2b: TCP

Introduction
In this lab, you will send TCP messages between machines. You will submit your source-code

electronically by 11pm on Thursday of Week 3 (This week). (This is also the deadline for reworked

reports for Lab 2 “a” -- The UDP lab.)

This is a team assignment; each team should be two members unless a different size is approved by

the instructor.

The goal of this lab is to write a short Python program, to send and receive network messages using

the TCP protocol.

The program has at least the following functions; you may add others.

main()

Prompt the user for the network operation to perform (tcp send or tcp receive) and then call the

selected function with appropriate argument values (as specified in the constants at the start of the

program)

 This function has no arguments

 This method is invoked with a main() function call at the end of the program.

tcp_send(server_host, server_port, message)

Transmit a single TCP message to a specified destination host and port and receive a response. In

this case the "destination" host is referred to as a "server", since messages are sent in both

directions.

 Arguments:

o server_host: string with destination IP address or host name

o server_port: integer designating destination port number

 This port will likely have to be above the "system" range (0-1023).

o message: string (8-bit, not unicode) to send

 Operation:

o Close socket and return.

CS2910 Fall 2014, Dr. Yoder Page 2 of 3

tcp_receive(listen_port)

Listen for a TCP connection on a specified port, receive and display a single received message, and

send a one-character response.

 Arguments:

o listen_port: integer designating receiving port number

 This port will likely have to be above the "system" range (0-1023).

 Operation:

o Connect to the specified listening port

o Accept a connection

o Receive a message

o Print the message string to the console

o Send a single-character response.

o Close sockets and return.

Procedure

1. Download the skeleton Python template: tcp.py (From the Schedule page)

2. Edit the header of the file to include your team members' names.

3. Fill in the methods that implement each of the two operations. You may add other helper

methods, but do not change the code provided in the template.

4. Use Wireshark to view the messages as they travel between nodes.

5. Finally, add comments at the end of your Python file, with the following information:

o A description of the functionality you implemented and the results of your testing.

o Comments on your experience in completing the lab, including any problems you

encountered. Briefly explain what you learned.

o Questions and suggestions.

If this base functionality turns out to be too easy, you may experiment with adding additional

functions, but be sure the basic requirements are still met.

CS2910 Fall 2014, Dr. Yoder Page 3 of 3

Try to divide up the primary responsibility for parts of the program in an equitable way. For a two-

member team, one member should write the "transmit" side of the protocol and the other member

should write the “receive”. If you acted as the transmitter on last week’s lab, take the roll of the

receiver if possible. Put the primary author's name in a comment before each function.

Test your software by running two copies of the program on two different systems (network

nodes). For debugging purposes, you may wish to test your program on your local machine with

localhost. Demonstrate your working software to the instructor.

 (Acknowledgements: The original version of this lab written by Dr. Sebern.)

