
CS2910 – Lab 3 - HTTP Client Fall 2014, Dr. Yoder Page 1 of 4

CS2910 Lab 4: HTTP Server

Lab Assignment
This is a team assignment; each team should be two members unless a different size is approved by

the instructor.

Introduction
The goal of this lab is to write a short Python program, to respond to HTTP requests and return web

resources, acting as an HTTP server.

Procedure
1. Download the skeleton Python template: httpserver.py

2. Edit the header of the file to include your team members' names and usernames. (Note: the

header format has changed from prior labs.)

3. Complete the handle_request method to parse a request and respond by returning the

designated resource. You will want to add other helper methods, but do not change the any

other code provided in the template.

o Note that this method will be invoked on a separate thread for each request

received. This means that there may be multiple copies of this method running

simultaneously, if the web client opens more than one connection at a time (e.g., to

download resources that are referenced in a main HTML file).

o For this reason, you should not rely on any global variables, but instead pass data as

arguments to related functions. Each thread will have its own execution stack.

4. Add comments at the end of your Python file, with the following information:

o A description of the functionality you implemented and the results of your testing.

o Comments on your experience in completing the lab, including any problems you

encountered. Briefly explain what you learned.

o Questions and suggestions.

You may not use a prebuilt library like Lib/BaseHTTPServer; the point of this lab is for you to

understand the low-level implementation of the HTTP protocol.

You may and should use the utility functions that are included near the end of the skeleton

template file. Read the description for each function and ask the instructor if you have questions

about them.

Additional implementation details will be discussed in class. If you have questions about these

requirements, ask in class or lab.

http://faculty-web.msoe.edu/yoder/cs2910/lab4res/httpserver.py

CS2910 – Lab 3 - HTTP Client Fall 2014, Dr. Yoder Page 2 of 4

If this base functionality turns out to be too easy, you may experiment with adding additional

functions, but be sure the basic requirements are still met.

Try to divide up the primary responsibility for parts of the program in an equitable way.

Assignment details
 Your server is only expected to handle "file" resources, so that you can service a client

request by returning the contents of a file associated with the resource identifier.

o You must be able to serve at least the following resources. Download each of them

from the table below: (You can find this table in the upload page, where the right-

click works.)

Relative URL File path, relative to the directory with your
Python server code file

File to serve (right-click to
download)

/ (default) ./index.html index.html
index.html ./index.html index.html
sebern1.jpg ./sebern1.jpg sebern1.jpg
style.css ./style.css style.css
e-sebern2.gif ./e-sebern2.gif e-sebern2.gif

 You must parse the request Request-Line and all request header lines, storing the

key/value pairs in a Python dictionary.

o Unless you implement additional functionality, it is unlikely that you will need to

make use of any of the request headers, but you should store and print them after

the entire request is received, so you can verify that you are handling the request

correctly.

 You must return an appropriate response Status-Line and header lines to the requesting

client.

 Use a Python dictionary to store the response header lines, and then send them all at once at

an appropriate time.

 The response header lines must include:

o A Date header (in proper RFC format) indicating the time that the request was

satisfied.

o A Connection header indicating that a persistent connection will NOT be used.

o A Content-Type header with an appropriate MIME type (you should use the

provided function to get the MIME type).

http://faculty-web.msoe.edu/yoder/cs2910/Lab4
http://faculty-web.msoe.edu/yoder/cs2910/lab4res/index.html
http://faculty-web.msoe.edu/yoder/cs2910/lab4res/index.html
http://faculty-web.msoe.edu/yoder/cs2910/lab4res/sebern1.jpg
http://faculty-web.msoe.edu/yoder/cs2910/lab4res/style.css
http://faculty-web.msoe.edu/yoder/cs2910/lab4res/e-sebern2.gif

CS2910 – Lab 3 - HTTP Client Fall 2014, Dr. Yoder Page 3 of 4

o A Content-Length header to specify the size of the resource being returned (if there

is one to return).

 You are not required to use chunked encoding for any file type.

 Optionally, you may use chunked encoding for text/html resources. If you do

so, you must include the appropriate Transfer-Encoding header instead

of Content-Length, and format the resource data appropriately in the

response.

Hints and Notes

 As in the HTTP client lab, you will have to both send and receive on the TCP connection to

the HTTP client. On the receiving side, since we will only be handling GET requests with no

entity bodies, there will likely be only one kind of data that needs to be processed:

1. "Textual" data, organized as a sequence of characters followed by the CR/LF pair.

Data in this category includes:

 The HTTP Request-Line.

 Request header lines.

 "Blank" lines (e.g., to terminate a header). You should probably have a "read

line" function from the HTTP client lab, which you can likely use here.

 Remember that when you read from the network stream with a function like recv, or from a

file with a function like read, you can only control the maximum number of bytes that will

be returned. You will always get at least one byte, unless there is no more data (in the case

of a file or a socket that has been closed), but there is no way to predict absolutely in

advance how many bytes will be available when you make the recv or read call.

o At times, you may get fewer than the number of bytes needed (e.g., in a block of

"binary byte" data). If this happens, you will have to make another recv call to get

additional data.

 When serving resource data from a file, open the file in binary ('rb') mode to avoid

problems with line-ending modification on Windows.

 Getting the proper HTTP "Date" value can be a little tricky. You can try something like this:

 timestamp = datetime.datetime.utcnow()

 timestring = timestamp.strftime('%a, %d %b %Y %H:%M:%S GMT')

 #Sun, 06 Nov 1994 08:49:37 GMT

 When you have questions you can't resolve, consult the instructor as soon as possible, in

person or by email.

CS2910 – Lab 3 - HTTP Client Fall 2014, Dr. Yoder Page 4 of 4

Submission (Due Friday, Week 6, 11PM)
One team member should submit your Python file by uploading it to the upload page (which is also

linked from the Schedule).

 (Acknowledgements: The original version of this lab written by Dr. Sebern.)

http://faculty-web.msoe.edu/yoder/cs2910/Lab4

