
CS2910 – Fall 2014 Lab 8: RSA Dr. Sebern & Dr. Yoder p. 1 of 2

Lab 8:
Encrypting and Decrypting with RSA

In this lab, you will play out several encryption scenarios using simple 16-bit RSA.

The scenarios you will play out:

 Forging a message by manipulating a non-cryptographic hash

 Cracking encryption using factoring

Before you can play out these scenarios, you will need the following:

 Code to create and use a public & private key

 Code to hash data (with a non-cryptographic hash)

 Once your code is written, assign the roles of Alice, Bob, and Trudy to each person.

Procedure

1. Download rsa.py

2. Put your names at the top of the file.

3. Create a design for the methods create_keys, compute_checksum, and apply_key in

rsa.py. See the documentation for these methods in the rsa.py template.

4. Fill out the design for the methods in part 3.

5. Bob: Run the program with the compute_checksum option to create an encrypted checksum

for the message “Bob owes Trudy $100.99”. Save the public & private keys, as well as the

encrypted checksum for your records. Provide Alice and Trudy with the public key. Provide

Trudy with the message and encrypted checksum. (Suppose that Trudy is an unscrupulous

online store…)

6. Trudy: Create a message that results in the same checksum as Bob’s message, but implies that

Bob owes a larger amount of money. Hint: If you rearrange the characters in the string, how

does that change the checksum? Supply Alice with the forged message and the encrypted

checksum that Bob gave you.

7. Alice: Check Trudy’s message using the verify_checksum option of the program. Does it

check out OK? If not, Trudy should keep trying. If so, how could Trudy be prevented from

performing this trick in a real application? (Suppose Alice is the bank responsible for transferring

the money from Bob to Trudy…)

CS2910 – Fall 2014 Lab 8: RSA Dr. Sebern & Dr. Yoder p. 2 of 2

8. As a team, create a design for the method break_key.

9. As a team, implement break_key.

10. Bob: Run the program and create a public key. Deliver this key to Alice. (You can reuse the key

from Step 5 if you like.)

11. Alice: Create a secret message. Encrypt it with Bob’s private key using the encrypt_message

option of the program. Supply Bob and Trudy with the message. (You may need to email the

hexadecimal characters to Bob and Trudy – or share them on IM.)

12. Bob: Run the program with the decrypt_message option to read Alice’s secret message.

13. Trudy: Run the program with the break_key option to read Alice’s secret message.

14. Whole team: In the comments at the end of the lab, answer the questions and comment about

what you learned in the lab. Your comments should include:

a. Answers to the questions included in the comments at the end of the template.

b. A description of the functionality you implemented and the results of your testing.

c. Comments on your experience in completing the lab, including any problems you

encountered. Briefly explain what you learned.

d. Questions and suggestions.

