Exercise: Encrypting and Decrypting with RSA

In this exercise, you will encrypt and decrypt numbers using a simple version of the RSA algorithm. Each team should have two members. Each team-member should complete the exercise as Bob, then pass along some information (but not the whole sheet!) to the other team-member, who will complete the exercise as Alice. In this way, both team-members will play both roles in the exercise. You should conceal your actual numbers from your team-members. You can consider your code for this exercise "prototype" code - you can throw it away and start design when you start the lab.

Instructions for Bob:

We will be doing $B=16$-bit RSA.

1. Select the encryption exponent $e=17$. (In practice, $\mathrm{e}=65537$ would often be used for larger p and q.)
2. Calculate p like this: (Write results in the table below)
a. Select a $(B / 2=) 8$-bit random number. You can use random. randint ($i, j)$ to select an integer x satisfying $i<=x<=j$. (You need to import random to use random.)
b. Set the two highest bits and the lowest bit (to 1). This forms our tentative p.

You can look at the binary form of, e.g. p, using " $\{0: b\}$ ". format (p). You can set the highest bit in p using $p=p \mid 0 b 10000000$, and set all three bits similarly, by putting ones in the positions of the bits you wish to set in the ObNNNNNNNN number used above.
c. Check if p is prime. If p is not prime, add 2 to p and try again. (You can use an inefficient program to check if the number is prime; e.g., check if all numbers smaller than p do not divide p).
d. Check if the number $(p-1)$ is co-prime with $e=17$, i.e., $\operatorname{gcd}(p-1, e)=1$. If not, add 2 to p and try again. (This step is necessary to ensure that we can find ad such that ed $=1(\bmod z)$ Note: since $e=17$ is prime, you can simply check that $(p-1) \bmod e \neq 0$.

Initial random number (decimal)	Initial random number (binary)	p (decimal)	p (binary)	Is p prime?	Is $\begin{aligned} & (p-1) \% e \neq 0 \\ & ? \end{aligned}$
	Final:				

(Instructions for Bob, continued.)
3. Repeat step 2 to select q. (Note: q must be different from p. Start over if q will equal p.)

Initial random number (decimal)	Initial random number (binary)	q (decimal)	q (binary)	Is q prime?	Is $(q-1) \% e \neq 0$?
	Final:				

4. Calculate the modulus $n=p q$
$n=$
5. Calculate the totient $z=(p-1)^{*}(q-1)$

Z $=$
6. Select the decryption exponent d such that ($d e) \bmod z=1$. You can simply "guess and check" all values of $1<d<z$. Only one value of d will work if e is selected as in step 5 . (This would usually be done using the Extended Euclid's Algorithm.) This is your private key. Do not reveal d, p, q, n, or z to Alice or Trudy!

$$
d=
$$

7. Provide your public key [e;n] (that is, simply the numbers e and n) to Alice and Trudy. (This simulates posting your public key on your personal website...)
8. Wait for Alice to send you a secret message.
9. Once you receive the secret message from Alice, you can decrypt it using your private key. Suppose c is the ciphertext. Compute the original message m as $m=c^{d} \bmod n$. For smaller numbers you can simply compute this as (c**d)\%n.

$$
\mathrm{c}=
$$

$$
\mathrm{m}=
$$

Don't reveal the secret message to Trudy!

Instructions for Alice:

1. You will receive the public key [e;n] (That is, simply the numbers e and n) from Bob. Write it here:
```
e =
    \(\mathrm{n}=\)
```

2. Select any number $0<=\mathrm{m}<\mathrm{n}$ for your plaintext secret message. If you like, you can encrypt a sequence of ASCII characters as separate messages m (that is, using block encryption.)
$\mathrm{m}=$
3. Compute the ciphertext c as $\mathrm{c}=\mathrm{m}^{\mathrm{e}}$ mod n . For smaller numbers you can simply compute this as (m**e)\%n.
$\mathrm{C}=$
4. Give the ciphertext message c to Bob and Trudy. This simulates Trudy eavesdropping on the wire.

Instructions for Trudy: (optional)

(If you have extra time, you may want to play this role - simply get [e;n] and c from another team!)

1. Wait to receive the public key $[\mathrm{e} ; \mathrm{n}]$ (This is simply the numbers e and n) from Bob.
e =
$\mathrm{n}=$
2. Factor n to find p and q (Use brute-force Python loop. This is the hard step that makes RSA secure for large numbers.)
$\mathrm{p}=$
$\mathrm{q}=$
3. Compute $z=(p-1)^{*}(q-1)$
z =
4. Now compute d the same way as Bob did: Select the decryption exponent d such that (de) mod $z=1$. You can simply "guess and check" all values of $d<z$. Only one value of d will work if e is selected as in step 5. (This would usually be done using the Extended Euclid's Algorithm.)
5. Wait to receive (eavesdrop) on the ciphertext message c from Alice to Bob.
$\mathrm{c}=$
6. Decrypt the c, ciphertext message: Compute the original message m as $m=c^{d} \bmod n$. For smaller numbers you can simply compute this as ($c^{* *} e$) $\%$.
$m=$
Acknowledgement: The simple form of the RSA encryption/decryption used in this exercise is based on Avi Kak's lecture notes on cryptography, available at https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture12.pdf
and from the text, Kurose \& Ross, Computer Networking: A Top-Down Approach, $6^{\text {th }}$ Edition, Section 8.2.2, pp. 684-688
