
CS2852 – Fall 2014 Exercise: Encrypting and Decrypting with RSA Dr. Sebern & Dr. Yoder p. 1 of 4

Exercise:
Encrypting and Decrypting with RSA

In this exercise, you will encrypt and decrypt numbers using a simple version of the RSA algorithm. Each

team should have two members. Each team-member should complete the exercise as Bob, then pass

along some information (but not the whole sheet!) to the other team-member, who will complete the

exercise as Alice. In this way, both team-members will play both roles in the exercise. You should

conceal your actual numbers from your team-members. You can consider your code for this exercise

“prototype” code – you can throw it away and start design when you start the lab.

Instructions for Bob:
We will be doing B=16-bit RSA.

1. Select the encryption exponent e=17. (In practice, e=65537 would often be used for larger p

and q.)

2. Calculate p like this: (Write results in the table below)

a. Select a (B/2=) 8-bit random number. You can use random.randint(i,j) to select an

integer x satisfying i<=x<=j. (You need to import random to use random.)

b. Set the two highest bits and the lowest bit (to 1). This forms our tentative p.

You can look at the binary form of, e.g. p, using "{0:b}".format(p). You can set the

highest bit in p using p = p | 0b10000000, and set all three bits similarly, by putting ones

in the positions of the bits you wish to set in the 0bNNNNNNNN number used above.

c. Check if p is prime. If p is not prime, add 2 to p and try again. (You can use an

inefficient program to check if the number is prime; e.g., check if all numbers smaller

than p do not divide p).

d. Check if the number (p-1) is co-prime with e=17, i.e., gcd(p-1,e)=1. If not, add 2 to p and

try again. (This step is necessary to ensure that we can find a d such that ed = 1 (mod z)

Note: since e=17 is prime, you can simply check that (p-1) mod e≠0.

Initial random
number (decimal)

Initial random
number (binary)

p (decimal) p (binary) Is p
prime?

Is
(p-1)%e≠0
?

 Final:

CS2852 – Fall 2014 Exercise: Encrypting and Decrypting with RSA Dr. Sebern & Dr. Yoder p. 2 of 4

(Instructions for Bob, continued.)

3. Repeat step 2 to select q. (Note: q must be different from p. Start over if q will equal p.)

Initial random
number (decimal)

Initial random
number (binary)

q (decimal) q (binary) Is q
prime?

Is
(q-1)%e≠0
?

 Final:

4. Calculate the modulus n = p q

 n =

5. Calculate the totient z = (p-1)*(q-1)

 z =

6. Select the decryption exponent d such that (d e) mod z = 1. You can simply “guess and check” all

values of 1 < d < z. Only one value of d will work if e is selected as in step 5. (This would usually

be done using the Extended Euclid’s Algorithm.) This is your private key. Do not reveal d, p, q, n,

or z to Alice or Trudy!

d =

7. Provide your public key [e;n] (that is, simply the numbers e and n) to Alice and Trudy. (This

simulates posting your public key on your personal website…)

8. Wait for Alice to send you a secret message.

9. Once you receive the secret message from Alice, you can decrypt it using your private key.

Suppose c is the ciphertext. Compute the original message m as m = cd mod n. For smaller

numbers you can simply compute this as (c**d)%n.

 c = m =

Don’t reveal the secret message to Trudy!

CS2852 – Fall 2014 Exercise: Encrypting and Decrypting with RSA Dr. Sebern & Dr. Yoder p. 3 of 4

Instructions for Alice:
1. You will receive the public key [e;n] (That is, simply the numbers e and n) from Bob. Write it

here:

e = n =

2. Select any number 0 <= m < n for your plaintext secret message. If you like, you can encrypt a

sequence of ASCII characters as separate messages m (that is, using block encryption.)

m =

3. Compute the ciphertext c as c = me mod n. For smaller numbers you can simply compute this as

(m**e)%n.

c =

4. Give the ciphertext message c to Bob and Trudy. This simulates Trudy eavesdropping on the

wire.

CS2852 – Fall 2014 Exercise: Encrypting and Decrypting with RSA Dr. Sebern & Dr. Yoder p. 4 of 4

Instructions for Trudy: (optional)
(If you have extra time, you may want to play this role – simply get [e;n] and c from another team!)

1. Wait to receive the public key [e;n] (This is simply the numbers e and n) from Bob.

e =

n =

2. Factor n to find p and q (Use brute-force Python loop. This is the hard step that makes RSA

secure for large numbers.)

p =

q =

3. Compute z = (p-1)*(q-1)

z =

4. Now compute d the same way as Bob did: Select the decryption exponent d such that (d e) mod

z = 1. You can simply “guess and check” all values of d < z. Only one value of d will work if e is

selected as in step 5. (This would usually be done using the Extended Euclid’s Algorithm.)

5. Wait to receive (eavesdrop) on the ciphertext message c from Alice to Bob.

c =

6. Decrypt the c, ciphertext message: Compute the original message m as m = cd mod n. For

smaller numbers you can simply compute this as (c**e)%n.

m =

Acknowledgement: The simple form of the RSA encryption/decryption used in this exercise is based on

Avi Kak’s lecture notes on cryptography, available at

https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture12.pdf

and from the text, Kurose & Ross, Computer Networking: A Top-Down Approach, 6th Edition, Section

8.2.2, pp. 684-688

https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture12.pdf

