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How things can go wrong...

* Lost packets

» Corrupted packets

* Reordered packets
 ...Malicious packets...
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Requirements for Reliability .

 Error Detection

 Recelver Feedback

e Retransmission



Requirements for Reliability_.

 Error Detection
— Checksum

* Receiver Feedback
— ACK — acknowledgment

— NAK — negative acknowledgment
 Also missing ACK

* Retransmission
— Sender resends segment with NAK or

missing ACK
?)j
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Packet Loss
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Sliding Window - Pipelined

* Requires Buffering on each end

Initial window
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TCP Data Transfer Specifics_.

 Data transferred as a stream of octets

« Data Is transferred in segments, but
acknowledged at the octet level

* Full duplex — data can be transferred In
either direction, or both

* Both endpoints of connection must
maintain buffers/windows for both
sending and receiving




Sender’s Window

Current window

1 2|13 4 5 67 8 9|10 11 ...

|

1, 2 have been sent and acknowledged
3 — 6 sent but not acknowledged

7 — 9 have not been sent but can be without
delay

10 and higher will not be sent until window
moves
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Window Advertisement _.

Window size can vary over time

Receiver sends a windows size with
acknowledgement that indicates how
many octets it Is willing to accept

Allows flow control
An advertisement of O will halt transfer |

1
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Acknowledgement

» Acknowledgements are cumulative

— Acknowledgement of any octet implies
receipt of all previous octets

— ++ Simple

— ++ Lost acknowledgements will not
necessarily result in retransmission
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Acknowledgement

* Acknowledgements
are cumulative

— Acknowledgement of g
any octet implies \
receipt of all j , 1
previous octets =
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Acknowledgement

* Acknowledgements
are cumulative

— Acknowledgement of l
any octet implies \
receipt of all =
previous octets =

X- SS daty :
Seq=92 timeout interv ’/P“CKV
What if timeout

was here?

— Think (30 s)
— Pair (30 s)
— Shair




Timeout and Retransmission_.

 \What do we use for a timeout?
— LAN — round-trip time for ACK might be ms

— [Internet — 100x
— Varies over time

[
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Adaptive Retransmission _.
I

* Round-trip time (RTT) Is monitored fo
each transmission/ACK

EstimatedRTT = (1l — a) * EstimatedRTT + a °* SampleRTT

O<a<1
Recommended value of a = 0.128 [RFC 6298]

DevRTT = (1 — B) * DevRTT + B-| SampleRTT — EstimatedRTT |

Recommended B is 0.25

TimeoutInterval = EstimatedRTT + 4 - DevRTT

==



Congestion Control _.

 Flow control i1s a function of the receiver
and its ability to accept data

« Congestion control is implemented by
the sender to avoid excessive
unsuccessful transmission (collapse)

>



New Variable - cwnd _.

« Congestion window

LastByteSent — LastByteAcked = min{cwnd, rwnd}

\ 1
!
=~

Un-acknowledged bytes

— cwnd — congestion window
— rwnd — receive window

|
We can send up to cwnd bytes per RTT perio



cwnd .

* Average transmission rate Is roughly
cwnd/RTT bytes/sec

* By manipulating cwnd, transmission
rate can be controlled



Congestion Detection _.

» Essentially loss of segments
— Retransmission on timeout
— Fast retransmit on duplicate ACK

* Adjust cwnd
— Decrease when a segment is lost

— Increase when [consistent] ACKs are
received

« Continue to increase until a segment is lost,

then backoff :




TCP Slow Start
e Start with a small g

cwnd (one MSS)

Time
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Lab Tomorrow .

* Wireshark
* Your TCP Server / Client (from Lab #2)
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