TCP as a Reliable Transport

sending Receiver

Application process process
t+

=]|

layer
L 4
. Ny Te——eene] TR ——— () * Ceeeeermeeetrenn—: | | 14 & -
rdt_send() | N deliver data | [0
v
Reliable data Reliable data
TrT:;Efn —# o transfer pratocol transfer protocol
e (sending side) {receiving side)
Reliable channel J J 3
udt send() - rdt_rev() -

L
MNetwaork I

layer
Unreliable channel

T 1
a. Provided service b. Service implementation

Key:

Bata [Packet

Figure 3.8 ¢ Reliable data transfer: Service model and service
implementation

How things can go wrong...

* Lost packets

» Corrupted packets

* Reordered packets
 ...Malicious packets...

’4

Requirements for Reliability .

 Error Detection

 Recelver Feedback

e Retransmission

Requirements for Reliability_.

 Error Detection
— Checksum

* Receiver Feedback
— ACK — acknowledgment

— NAK — negative acknowledgment
 Also missing ACK

* Retransmission
— Sender resends segment with NAK or

missing ACK
?)j

Stop and Wait

Events At Sender Site

N

RTT —
Round
Trip

Time {

4

Send Packet 1

Receive ACK 1
Send Packet 2

Receive ACK 2

Network Messages

Events At Receiver Site

Receive Packet 1
Send ACK 1

Receive Packet 2
Send ACK 2

Packet Loss

Events At Sender Site MNetwork Messages Events At Receiver Site

packet
Send Packet 1 | / looss
Start Timer "“--——-,% -

~ = Packet should have arrived
= ACK would have been sent

ACK would normally |e - -~
arrive at this time

Timer Expires

Retransmit Packet 1
Start Timer T

™ PReceive Packet 1
_—| Send ACK 1

Receive ACK1 o —
Cancel Timer

— —

Sliding Window - Pipelined

* Requires Buffering on each end

Initial window

Events At Sender Site

Send Packet 1

Send Packet 2

Send Packet 3

(a)

Window slides

Receive ACK 1

Receive ACK 2
L Receive ACK 3
10

(k)

—
— -

—_ =

=il
_.-‘" ——

a"'f

T _—
" T

Network Messages

Events At Receiver Site

Receive Packet 1
Send ACK 1

Receive Packet 2
Send ACK 2

Receive Packet 3
Send ACK 3

TCP Data Transfer Specifics_.

 Data transferred as a stream of octets

« Data Is transferred in segments, but
acknowledged at the octet level

* Full duplex — data can be transferred In
either direction, or both

* Both endpoints of connection must
maintain buffers/windows for both
sending and receiving

Sender’s Window

Current window

1 2|13 4 5 67 8 9|10 11 ...

|

1, 2 have been sent and acknowledged
3 — 6 sent but not acknowledged

7 — 9 have not been sent but can be without
delay

10 and higher will not be sent until window
moves

—

E

—

Window Advertisement _.

Window size can vary over time

Receiver sends a windows size with
acknowledgement that indicates how
many octets it Is willing to accept

Allows flow control
An advertisement of O will halt transfer |

1

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER
ACKNOWLEDGEMENT NUMBER
HLEN | RESERVED | CODE BITS WINDOW
CHECKSUM URGENT POINTER
OPTIONS (IF ANY) PADDING

PAYLOAD
?}
B

Acknowledgement

» Acknowledgements are cumulative

— Acknowledgement of any octet implies
receipt of all previous octets

— ++ Simple

— ++ Lost acknowledgements will not
necessarily result in retransmission

Events At Sender Site Network Messages Events At Receiver Site

Send Packet 1 — _

| Receive Packet 1

Send Packet 2 — -+ Send ACK 1
-:_,Z-T-"""::-—i.. Receive Packet 2

Send Packet 3 ---—-._______;__:,_.-_-""' 1 Send ACK 2
) _,x == Receive Packet 3

Receive ACK 1 & _— | Send ACK 3

Receive ACK2 &

Receive ACK 3 |4

Acknowledgement

* Acknowledgements
are cumulative

— Acknowledgement of g
any octet implies \
receipt of all j , 1
previous octets =

: S dag, :

(loss) :

Seq=92 timeout interval — /
BCKGX

Acknowledgement

* Acknowledgements
are cumulative

— Acknowledgement of l
any octet implies \
receipt of all =
previous octets =

X- SS daty :
Seq=92 timeout interv ’/P“CKV
What if timeout

was here?

— Think (30 s)
— Pair (30 s)
— Shair

Timeout and Retransmission_.

 \What do we use for a timeout?
— LAN — round-trip time for ACK might be ms

— [Internet — 100x
— Varies over time

[

105

|

| 1 | \ | [I | I [
10 20 30 40 50 60 70 80 90 100

Datagram Number

f

Adaptive Retransmission _.
I

* Round-trip time (RTT) Is monitored fo
each transmission/ACK

EstimatedRTT = (1l — a) * EstimatedRTT + a °* SampleRTT

O<a<1
Recommended value of a = 0.128 [RFC 6298]

DevRTT = (1 — B) * DevRTT + B-| SampleRTT — EstimatedRTT |

Recommended B is 0.25

TimeoutInterval = EstimatedRTT + 4 - DevRTT

==

Congestion Control _.

 Flow control i1s a function of the receiver
and its ability to accept data

« Congestion control is implemented by
the sender to avoid excessive
unsuccessful transmission (collapse)

>

New Variable - cwnd _.

« Congestion window

LastByteSent — LastByteAcked = min{cwnd, rwnd}

\ 1
!
=~

Un-acknowledged bytes

— cwnd — congestion window
— rwnd — receive window

|
We can send up to cwnd bytes per RTT perio

cwnd .

* Average transmission rate Is roughly
cwnd/RTT bytes/sec

* By manipulating cwnd, transmission
rate can be controlled

Congestion Detection _.

» Essentially loss of segments
— Retransmission on timeout
— Fast retransmit on duplicate ACK

* Adjust cwnd
— Decrease when a segment is lost

— Increase when [consistent] ACKs are
received

« Continue to increase until a segment is lost,

then backoff :

TCP Slow Start
e Start with a small g

cwnd (one MSS)

Time

cwnd Over Time

ssthresh

(in segments)
oo

Congestion window

TCP Reno

e e —]

ssthresh

[1
5 b

Transmission round

Figure 3.53 # Evolution of TCP's congestion window (Tahoe and Reno)

I
7

| el [) () 8 e |
8 9 10 111213 14 15

Lab Tomorrow .

* Wireshark
* Your TCP Server / Client (from Lab #2)

The content of this video is based
In part on lecture slides from a very
good textbook, and used with the
author’s permission:

Computer Networking: A Top-Down
Approach, 6e, by Jim Kurose and
Keith Ross

Publisher: Pearson, 2013

It is also based on slides provided
by Dr. Darrin Rothe

Computer Networking

KUROSE ROSS

—

