
CS2910 – Fall 2015 Lab 9: RSA Dr. Yoder p. 1 of 2

Lab 9:
Encrypting and Decrypting with RSA

In this lab, you will create and brute-force attack 16-bit RSA encryption.

Before you can play out these scenarios, you will need code to create and use a public & private key.

Once your code is written, assign the roles of Alice, Bob, and Trudy to a person on your team.

Procedure

1. Download rsa.py

2. Put your names at the top of the file.

3. Create a design for the methods create_keys and apply_key in rsa.py. See the

documentation for these methods in the rsa.py template. One of these methods requires

significantly more work than the others. Complete your design as a team, then divide up the

work for the most challenging method among the members of the team.

4. Fill out the design for the methods in part 3.

5. As a team, create a design for the method break_key.

6. As a team, implement break_key.

7. Bob: Run the program and create a public/private key pair. Deliver the public key to Alice. (You

can reuse the key from Step 5 if you like.)

8. Alice: Create a secret message. Encrypt it with Bob’s public key using the encrypt_message

option of the program. Supply Bob and Trudy with the encrypted message. (You may need to

email the hexadecimal characters to Bob and Trudy – or share them on IM.)

9. Bob: Run the program with the decrypt_message option to read Alice’s secret message using

your private key.

10. Trudy: Run the program with the break_key option to read Alice’s secret message using only

the public key.

11. Whole team: In the comments at the end of the lab, answer the questions and comment about

what you learned in the lab. Your comments should include:

a. Answers to the questions included in the comments at the end of the template.

b. A description of the functionality you implemented and the results of your testing.

c. Comments on your experience in completing the lab, including any problems you

encountered. Briefly explain what you learned.

d. Any questions you have about the lab (optional)

e. Comments on the lab and suggestions for improvement.

CS2910 – Fall 2015 Lab 9: RSA Dr. Yoder p. 2 of 2

If you have time
In this bonus exercise, we will pretend that we are using enough bits so that break_key is ineffective.

Nevertheless, because we use a non-cryptographic hash, Alice can forge a message to look like the one

Bob signed with his public key.

1. Bob: Run the program with the compute_checksum option to create an encrypted checksum

for the message “Bob owes Trudy $100.99”. Save the public & private keys, as well as the

encrypted checksum for your records. Provide Alice and Trudy with the public key. Provide

Trudy with the plain-text message and the encrypted checksum. (Suppose that Trudy is an

unscrupulous online store…)

2. Trudy: Create a message that results in the same checksum as Bob’s message, but implies that

Bob owes a larger amount of money. Hint: If you rearrange the characters in the string, how

does that change the checksum? Supply Alice with the forged message and the encrypted

checksum that Bob gave you.

3. Alice: Check Trudy’s message using the verify_checksum option of the program. Does it

check out OK? If not, Trudy should keep trying.

4. As a team: Explain in your final comments how Trudy can be prevented from performing this

trick in a real application. (Suppose Alice is the bank responsible for transferring the money from

Bob to Trudy…)

