
MSOE EECS Department
CS2911: Week 2 Lab Grading Checklist
Dr. Yoder Name:

Item Points
Introduction: Describe the lab in your own words. (You may use the
space below.)

/ 1

Problems 1 and 8. (See requirements in exercises) / 1
Problems 2 and 9 / 1
Problems 3 and 10 / 1
Problems 4 and 11 / 1
Problems 5 and 12 / 1
Problems 6 and 13 / 1
Problem 14. Write the two types you found. / 1
Problem 15 / 1
Problems 16 and 17 / 2
Problem 18 / 1
Problems 19 and 20. Do not use str, int, etc. / 1
Problems 21- 23. Do not use str, int, etc. / 1
Problems 24 and 25 / 1
Problems 26 / 1
Problem 27 (excellent credit) / 1
Problem 29(optional) / 0
Summarize what you learned during this lab. (You may use this
space.)

/ 2

Things you liked or suggestions for improvement (Required; you may
use this space)

/ 1

Total

/ 20

Follow these instructions for full credit:

• Staple this lab cover sheet on top of all the materials

you are submitting.

• Submit your work in the order listed above.

• In addition to the materials above, submit any other

supporting materials you create while working the

lab where they fit best in your report.

• Your lab packet is due at the start of the following

week’s lab period. There is a 2 point per day late

penalty on the packet. Slip your submitted lab packet

under my office door or submit your packet to me

during the laboratory.

CS2911 – Fall 2017 Dr. Yoder – Page 1 of 6

Lab 2: Python Encoding
Work through the first few problems on paper before starting Python. Box your answers. I

encourage you not use a calculator, using the space provided or extra paper.

1. Predict how the bytes object b'2 Faced' will be stored in Python. Write your answer in

hexadecimal shorthand.

2. Predict how the bytes object b'\r\n' will be stored in Python. Write your answer in both

hexadecimal shorthand and bits (binary).

3. Predict how the number 104 will be stored in Python. Write your answer in binary, then

write it in hexadecimal shorthand.

4. Predict how the number 0xfe19 will be stored in Python. Write your answer in

hexadecimal shorthand, then write it in binary.

5. Predict how the bytes object b'\xbeef' will be stored in Python. Write your answer in

hexadecimal shorthand, then write it in binary.

6. Predict how the number 1055 will be stored in Python. Write your answer in binary, then

write it in hexadecimal shorthand.

CS2911 – Fall 2017 Dr. Yoder – Page 2 of 6

7. Set up the showbits library: (See lab page for video version of these instructions)

a. Go to the Lab 2 webpage and download the python module showbits.py.

b. Place the file directly inside the top-level of your Python project.

c. Open the Python console using Tools -> Python Console.

d. In the console, type from showbits import bits, shorthand. (If you use this

in a file, use import showbits instead, and use showbits.bits() with the

package-name when calling bits().)

As you check your answers to your previous problems, either write a check-mark if the answer was

correct, or write the difference between your prediction and the actual value and write what you

learned from it.

8. Check your answer to Problem 1 by typing shorthand(b'2 Faced').

9. Check your answer to Problem 2 by typing shorthand(b'\r\n').

10. Check your answers to Problem 3 by typing bits(104) and shorthand(104).

11. Check your answers to Problem 4 by typing shorthand(0xfe19) and bits(0xfe19).

12. Check your answers to Problem 5 by typing shorthand(b'\xbeef') and

bits(b'\xbeef').

13. Check your answers to Problem 6 by typing bits(1055) and shorthand(1055).

14. Set i = 3. Use Python to determine the type of i. (See Java/Python table for hints.) Also

determine the type of int. Write the two types.

CS2911 – Fall 2017 Dr. Yoder – Page 3 of 6

Python bytes objects represent the bytes used to send data over the network. Writing Python bytes

object literals is a good way to exactly specify what you plan to send over the network in examples.

15. Consider the number 19610

a. Write a literal bytes object to hold the number in raw binary. That is, the internal

representation is simply binary. Do this by hand.

a. Write a literal bytes object to hold the number in ASCII decimal. That is, the

internal representation is ASCII codes for each byte. (See the hints on writing literal

values from the previous part.). Do this by hand.

Consider a message in this format: a header consisting of two ASCII digits is

followed by a body holding arbitrary payload data. The digits stored in the header

form a decimal number.

16. An application message consists of a list of raw binary numbers. Each number uses a

variable number of bytes. A single raw binary byte sent before each number tells how many

bytes are in the number. After the last number, a 0 size byte is sent.

a. Write the hex shorthand for a message in this format that sends the numbers in this

list: [4, 5, 10, 7]

b. Write a bytes object literal that holds the bytes in part a. Write this in the most

convenient way to write it in Python.

17. A message holds several numbers. Each number is stored with a variable number of bytes;

a single byte sent before each number stores how many bytes are in the remainder of the

number. Both this size and the number itself are stored as ASCII numbers. After the last

number, a “0” size byte is sent to indicate the message is over.

a. Write the hex shorthand for a message in this format that sends the numbers in this

list: [4, 5, 10, 7]

CS2911 – Fall 2017 Dr. Yoder – Page 4 of 6

18. Imagine you just received a bytes object b from a sender over the network. The bytes object

holds the bits with hexadecimal shorthand 42 41. If we run the command

int.from_bytes(b,'big'), we get the python int 16961. If we run the command

b.decode('ASCII'), we get the python str 'BA'.

Describe how you could determine whether it is a raw binary number or ASCII text that is

meant to be stored in the bytes object. In other words, did the user mean to send the int

or the str? Be creative – there are multiple ways you might know. But you must think

outside the bytes object. The goal is critical thinking, not remembering some fact from class

or the book.

To prepare data for sending or to understand data that has been received, it is moved in and out of

a bytes object. To avoid unnecessary data conversion, in Problems 17-23, do not use the str, int,

hex, format, etc. functions. Instead use the commands introduced by your instructor during the lab

period (See the Java-Python Translation Table to work ahead). The phrase “Instruct Python to

copy” indicates that you should use a Python command that converts an object of one type into

another rather than writing a literal value in the new type. There is no need to write your variables

in hexadecimal shorthand unless the problem specifies to do so.

19. Assign the number 100010 to a variable. Instruct Python to copy the stored bits contained

in this variable into a 16-bit Python bytes object. (The bytes object should store the same

bits as the int internally.) Looking back at your notes, check that the bytes object has the

correct values in it. Write the Python code you used here:

20. In Problem 8, you created the bytes object b'2 Faced' by simply typing it into Python.

Now, create the bytes object by specifying the hexadecimal shorthand you found in

Problem 1 in an int literal. For example, to store the hexadecimal shorthand 12 34 FF into a

variable, you could type i=0x1234ff. Use an int literal like 0x… rather than a bytes object

like b'\x__...'. You should get an int object that, when you look at its bits in hex

shorthand, stores your answer to Problem 8.

CS2911 – Fall 2017 Dr. Yoder – Page 5 of 6

21. Next, instruct Python to copy the bits stored in a variable (in Problem 16) into a Python

bytes object, just as you did with the number 1000 in Problem 15. Display the bytes object

to check if it is b'2 Faced'. Write the Python code you used just for the transfer here:

22. In Problem 14, you found the hexadecimal shorthand for 1055. Pad this with zeros (if

needed) to create a two-byte number and write it as a bytes object literal:

b'\x__ __\x__ __'. Next, copy the contents of the bytes object back into an integer. (The

int should store the same bits as the bytes object.) It should be the number 1055. Write the

Python code you used here:

CS2911 – Fall 2017 Dr. Yoder – Page 6 of 6

23. Consider that 100010 = 03e816. Circle the one bytes object literal that will be produced by

the code. Do this by hand. (After you have committed to an answer, you can run the code –

you can, of course, change your answer.)

i = 1000

i.to_bytes(2,’little’)

b. b’0001’

c. b’1000’

d. b’\x30\x8e’

e. b’\xc0\x17’

f. b’\xe8\x03’

The restrictions laid down for the previous problems are now lifted as conversions between

formats may be needed for Problems 24 and 25.

24. The command user_says = input('Please enter the length of the file') will

prompt the user to enter the length of a file, but it returns it as a str rather than an int.

Write some python code to store the actual number as an int in the variable file_length.

25. Suppose file_length = 100. Write some Python code that produces the bytes object

b'File length: 100'. The number 100 should change with the file_length variable. (You

can concatenate bytes objects just like strings.)

26. Both to_bytes() and encode() produce a bytes object. Describe the difference between

these methods.

27. (Excellent credit!) Write a Python implementation of the str() method that takes an int as

the argument and converts it to the equivalent decimal str. Use only to_bytes(),

from_bytes(), encode(), decode(), and arithmetic operators like < and +. Do not use

str() the str, int, hex, format, etc. functions. Cite any external or internal sources, including

hints received from other students.

28. (Just for fun!) Write a Python implementation of the int() method that takes an ASCII

decimal bytes object and converts it to the equivalent int.. Use only to_bytes(),

from_bytes(), encode(), and decode(), and arithmetic operators like < and +. Do not

use str() or any other command like it in Python.

