
CS2911 Dr. Yoder Page 1 of 12

CS2911: Code Reading Practice

The purpose of this document is to provide a variety of simple (yet tricky!) programs to give

students practice with reading and executing code by hand. Some of the problems also exercise

Python encoding of integers in raw binary or ASCII decimal. If you find these problems interesting,

I encourage you to bring your answers to my office for us to discuss them.

1. Consider this code

m = b’’

for i range(0, 2):

 m = next_byte()

return m

a. Write the bytes object literal for the return value of this function when it receives the

message with contents. Write bytes within bytes objects as ASCII characters rather

than \x-escaped codes where possible.

0d 0a 61 62 41

CS2911 Dr. Yoder Page 2 of 12

2. Consider this code

e = b’’

j = b’’

while e != b’\n’:

 e = next_byte()

 j += next_byte()

return (e,j)

b. Complete the literal for the return value of this function when it receives the message

with contents. (A literal tuple is just written as parenthesis, as shown below. Fill in the

two bytes objects returned by this method.) Write bytes within bytes objects as ASCII

characters rather than \x-escaped codes where possible.

61 62 41 0d 0a 41 0d 0a 35 0d 0a

(,)

CS2911 Dr. Yoder Page 3 of 12

3. Consider this code

e = next_byte()

while e != b’\n’:

 e = next_byte()

 j += e

return (e,j)

c. Write the literal for the return value of this function when it receives the message with

contents. (A literal tuple is just written as parenthesis, as shown below. Fill in the two

bytes objects returned by this method.) Write bytes within bytes objects as ASCII

characters rather than \x-escaped codes where possible.

46 61 64 65 64 20 62 65 61 64 0d 0a

CS2911 Dr. Yoder Page 4 of 12

4. Consider this code

e = next_byte()

f = int(e)

g = b’’

for i in range(0,f):

 g += e

 e = next_byte()

return (f,g,e)

d. Write the literal for the return value of this function when it receives the message with

contents. (A literal tuple is just written as parenthesis, as shown below. Fill in the two

bytes objects returned by this method.) Write bytes within bytes objects as ASCII

characters rather than \x-escaped codes where possible.

37 61 64 65 64 20 62 66 33 64 0d 0a

CS2911 Dr. Yoder Page 5 of 12

5. Consider this code

e = b’’

while next_byte() != b’\n’:

 g += e

 e = next_byte()

return (g,e)

e. Write the literal for the return value of this function when it receives the message with

contents. (A literal tuple is just written as parenthesis, as shown below. Fill in the two

bytes objects returned by this method.) Write bytes within bytes objects as ASCII

characters rather than \x-escaped codes where possible.

41 31 0d 0a 37 0d 0a 35 0d 0a

CS2911 Dr. Yoder Page 6 of 12

6. Consider this code

b = b’’

for i in range(0,2):

 b += next_byte()

return b

f. Write the literal for the return value of this function when it receives the message with

contents. Write bytes within bytes objects as ASCII characters rather than \x-escaped

codes where possible.

0d 10

g. Write the literal for the return value of this function when it receives the message with

contents. Write bytes within bytes objects as ASCII characters rather than \x-escaped

codes where possible.

31 32 33 34

CS2911 Dr. Yoder Page 7 of 12

7. Consider this code

b = b’’

for i in range(0,4):

 b = next_byte()

return b

h. Write the literal for the return value of this function when it receives the message with

contents. Write bytes within bytes objects as ASCII characters rather than \x-escaped

codes where possible.

31 32 0d 0a 66 61 64 65 64 0d 0a

CS2911 Dr. Yoder Page 8 of 12

8. Consider this code

f = b’’

q = next_byte()

while q != b’A’

 f += q

 q = next_byte()

return (f, q)

i. Write the literal for the return value of this function when it receives the message with

contents. Write bytes within bytes objects as ASCII characters rather than \x-escaped

codes where possible.
0D 0A 43 42 41 63 62 61

j. Write the literal for the return value of this function when it receives the message with

contents. Write bytes within bytes objects as ASCII characters rather than \x-escaped

codes where possible.

46 61 63 20 41 63

CS2911 Dr. Yoder Page 9 of 12

9. Consider this code

c = b’’

q = next_byte()

while q != b’a’:

 q = next_byte()

 c += q

return (c, q)

k. Write the literal for the return value of this function when it receives the message with

contents. Write bytes within bytes objects as ASCII characters rather than \x-escaped

codes where possible.
46 65 65 64 20 61 20 64

CS2911 Dr. Yoder Page 10 of 12

10. Consider this code

g = next_byte()

g += next_byte()

h = int(g)

j = b’’

k = b‘’

for i in range(0,h):

 j += k

 k = next_byte()

l = int(k)

return l

a. On the right above, trace the values of the variables as literals as the program runs for

the message received below. Display ASCII characters instead of codes where possible.

b. Write the literal for the return value of this function when it receives the message with

contents. Write bytes within bytes objects as ASCII characters rather than \x-escaped

codes where possible.

32 31 33 35 37

CS2911 Dr. Yoder Page 11 of 12

11. Consider this code

d = b’’

e = b’’

while e != b’\x00’:

 d += e

 e = next_byte()

return int.from_bytes(d, ‘big’()

c. On the right above, trace the values of the variables as literals as the program runs for

the message received below. Display ASCII characters instead of codes where possible.

d. Write the literal for the return value of this function when it receives the message with

contents.

01 00

CS2911 Dr. Yoder Page 12 of 12

12. Consider this code

d = b’’

e = b’’

while e != b’\x00’:

 e = next_byte()

 d += e

return int.from_bytes(d, ‘big’()

e. On the right above, trace the values of the variables as literals as the program runs for

the message received below. Display ASCII characters instead of codes where possible.

f. Write the literal for the return value of this function when it receives the message with

contents.

01 00

g. What values can this protocol not send?

