
Department of Electrical and Computer Engineering and Computer Science

Milwaukee School of Engineering

Spring Quarter, 2013-2014

SE3910: Real Time Systems

Page 1 of 2

SE3910 Lab 7: GStreamer in C

Due: April 30, 2014 (Dr. Schilling’s section)

Due: Week 8, Monday (Dr. Yoder’s section)

1. Introduction
Two weeks ago, we started to capture images using GStreamer. This week, we are going to do a more

thorough analysis of the timing of script-based and C algorithms.

2. Lab Objectives
 Practice writing in a low-level compiled language

 Compare the run-time of compiled and scripted code

 Compare timing results obtained internally (using the time utility) and externally (using an

oscilloscope)

3. Prelab
None for a change.

4. Part 1: Removing the script from Week #5
In week #5, we worked on taking pictures with the camera. As a first step toward integrating this into a

Qt app, we would like to do this in C. Here’s a mechanism we can use to do that.

On the course website, there is a program called testcode which essentially mimics the script we wrote a

few weeks ago except that it is implemented entirely in C. Using this code for ideas, modify your code

from two weeks ago to be written entirely in C. You will only be able to build the code on the

beaglebone, as the libraries are not setup for cross compilation on your virtual machine (nor can they

easily be setup.) You will need to use or modify the included makefile to make the code.

In particular, your app should:

 Provide documentation of usage when run without arguments, for example…

Usage: camera option [file.png]

 option – one of “snap” or “timer”

 snap - take picture immediately

 timer – take picture after some amount of time

 file.png – the file to be written

 Be documented internally – all methods, global variables, etc.

 Allow the user to either take a picture immediately or wait until the timer has gone off

 Save the user’s pictures to filenames sequentially rather than overwriting files

 Set a GPIO pin high right before taking the picture, and set it low after

Department of Electrical and Computer Engineering and Computer Science

Milwaukee School of Engineering

Spring Quarter, 2013-2014

SE3910: Real Time Systems

Page 2 of 2

5. Part 2: Timing tests
First use the “time” utility to measure the amount of time the process takes to run, as in Dr. Yoder’s

section of Lab 4. Then, measure the time on an oscilloscope.

6. Deliverables / Submission
Each team will be responsible for submitting one report with the following contents:

1. Introduction -> What are you trying to accomplish with this lab? This section shall be written

IN YOUR OWN WORDS. DO NOT copy directly from the assignment.

2. Timing Analysis

a. Present a table (or tables) of timing results including

i. five sample times gathered by the “time” utility

ii. five sample times gathered by the oscilloscope

iii. the mean & sample std deviation of these

iv. your results from the bash script program last week

v. (optional: Get the 10 samples for the bash script, too)

b. For the modified program, is the timing any different than it was when you simply used a

script? Does putting everything in C offer any performance advantages?

c. Do the two timing approaches yield the same times?

3. Things gone right / Things gone wrong -> This section shall discuss the things which went

correctly with this experiment as well as the things which posed problems during this lab.

4. Conclusions -> What have you learned with this experience? What improvements can be

made in this experience in the future?

5. Appendix -> Source code

a. For each program, include the source code you used. Code should be well commented

and documented. Source code should show which portion of the lab it was intended for.

b. (See the documentation requirements above)

Dr. Schilling’s Section (tentative)

This material should be submitted as a single pdf file.

Dr. Yoder’s Section

The source code should be included as a ZIP. The source code should be structured as follows:

 lab7.zip

o lab7

 Makefile

 source.c

 source.h

 (optinal) any scripts

 etc.

When make is run (with appropriate arguments, e.g. make all –f makefile), the program should

build for the Beaglebone. If you use any arguments for make, please document these.

If you have any questions, consult your instructor.

