Rough Outcomes List

Dr. Yoder		
Lecture 1-2		
Define soft, firm, hard real-time systems		
Define real-time system		
Define embedded system		
Define event, synchronous, asynchronous, aperiodic, sporadic, punctual, deterministic, stochastic		
 Don't exhibit the 5 misconcentions commonly made about real-time systems 		
Not covered:		
Explain why deterministic algorithms may be superior for real-time systems		
Lecture 1-3:		
Compute the theoretical response-time of a person grabbing a stick		
Measure above experimentally		
• etc.		
Lecture 2-1:		
Read distances in time and voltage on an oscilloscope		
• etc.		
Describe distances on a waveform		
Compute period from frequency, and vice-versa		
• etc		
etu:		
Analyze simple circuits involving resistors and switches in series		
 (optional) Describe how different signals sound. 		
 (introduced later) Given information about standard encodings, describe maximum frequency. 		
that can be heard.		
Lecture 3-1:		
Describe how to not burn up your beaglebone		
• etc.		
Lecture 3-2, 3-3		
Do simple programming exercises in C		
(optional) compute the power of a signal		
• etc.		
Lecture 4-1:		
Resistor color codes		
 pthreads (see also: qt threads) 		
 POSIX sockets (see also: qt sockets) 		
TODO: when? Covered (Lecture 4-3?)		
• Explain the concept of a Beaglebone cape		
Understand how to read a basic schematic		
 Explain the concept of a pull up and a pull down resistor 		
Explain the difference between polling and interrupts		

Explain the difference between poining and interrupts
 Explain how an interrupt service routine is handled

0	JLDefinitions, Flowchart, Timing diagram
0	Cartoons

- Cartoons
 Detailed steps
- Explain the purpose for a watchdog timer

Not yet covered:

- Explain the concept of a system on a chip
- Explain the concept of a dropping resistor
- Limiting current through an LED
- Explain the process of setting the time out on the Watchdog Timer

TODO: When? Covered.

- Watchdog Timer (wrap-up)
 - o "Video" of rotating timer
 - Conditional compilation
 - Code demo

Covered in lab only:

• multithreading

• Code demo

Lecture 4-2

- Quiz: Define real-time and embedded systems
 - Slides have notes for discussions
- CPU Utilization

o In-class exercise

- Interrupts
- TODO: When? Covered earlier
 - Operating System Roles
 - o Essential (Scheduling, Dispatch, Intertask comm and sync)
 - Important (Privatized memory, I/O services, "Supporing features")
 - Handy (UI, Security, File management)
- TODO: when? Covered by Schilling

Resistor Color Codes

TODO: When? Covered earlier

• Sockets on an embedded platform

Not yet covered:

• TODO: demo

Lecture 5-3

- RTOS Scheduling
 - Task State Diagram
 - Pre-runtime vs runtime scheduling
 - Round Robin Scheduling
 - Impact on latency
 - Cyclic Code Scheduling
 - Rate-Monatonic Scheduling

In-class Exercise

Lecture 6-1

• Review only

Lecture 6-2

• Exam

Lecture 6-3		
Good Friday		
Not sovered		
Not covered		
Selecting frame size in cyclic code scheduling		
Lecture 7-1		
Gstreamer application		
Lecture 7-2		
• QTAp	plication	
N/A		
Not covered		
Lecture 7-3		
 Data-r 	ate	
0	Explain the relationship between bandwidth and image quality for a video stream.	
0	Calculate the bandwidth needed to deliver a given quality video	
0	Calculate bandwidth required to achieve a particular COmpression ratio, etc.	
0	Explain the differences between MB, Mb, MiB, and Mib, and similarly for KB, GB, TB.	
0	Write out MB, etc. in full form (e.g. Mebibits for Mib).	
0	Convert between orders of magnitude using MiB and MB, etc.	
0	Explain the advantage of MiB over the modern MB.	
0	Explain actions you should take if you see a unit like MB in documentation. Explain why you should	
	take action.	
0	Give two reasons why a higher frame-rate might be good	
0	Explain the stroboscopic effect	
0	Describe two approaches to correct the stroboscopic effect	
0	Calculate the maximum data rate of a channel under noisy signal conditions	
0	Explain the Nyquist sampling theorem	
In Lecture 8-1 slides, covered 8-2:		
Rate Calculation		
0	Explain the Nyquist sampling theorem (cont.)	
0	Calculate the minimum sampling rate necessary to transmit a signal using the Nyquist Theorem	
0	Explain the relationship between the number of hits and quality when quantizing a signal	
Not covered:		
Not covered.		
	alculation	
• Critiqu	le the Java language for usage in Real Time Systems	
Not covered		
• Optim	ize source code using well known optimization techniques, such as	
0	Repeated calculations	
0	Constant folding	
0	Loop invariance removal	
0	Induction variance	
0	Loop unrolling	
0	Loop jamming	
Lecture 8-3		
This lecture m	ay need to be greatly reduced next time around to avoid redundancy with previous classes.	

Needs to focus on how this impacts real-time systems.

- Static Analysis
 - o Understand the difference between static analysis and testing
 - Define the halting problem
 - Explain the difference between a false positive and a false negative
 - Construct a primitive static analysis tool using grep
 - o Describe the impact of using static analysis tools over time
 - o Compare and contrast style guides and programming standards
 - o Explain the steps necessary to integrate static analysis into a development process
 - Explain the steps necessary for new code
 - Explain the steps necessary for legacy code

Lecture 9-1

• (optional) Derive the statistics necessary to determine if two processes have the same mean Lecture 9-2

- Determine p-value for the difference of two means when the std. is known
- Determine p-value for the difference of two means when the std. is unknown
- Determine confidence intervals for two processes having the same mean
- Determine whether two processes have a significantly different means
- Describe how "significant" can be quantified
- Determine the probability of success if failure during each hour is independent
- Determine the probability of success if prob. of failure is linearly increasing per hour
- List the three or four key steps you would use to quantify whether a failure rate similar to 10⁻¹⁰/hr is a reasonable failure rate for a given software system

Lecture 9-3

- Describe the advantages and disadvantages of Structured Analysis and Design (SA/SD) compared to Object-Oriented Analysis and Design (OOAD)
- Give an example of a hierarchical SD.
- Explain the importance of data dictionaries to any kind of design (e.g. both SD and OOD)
- Explain how SD & data dictionaries can aid in discovering incompatible data representations

Covered previously, optional for this class

- Explain the difference between internal and external qualities of software
- List the 8 qualities of real-time software
- Explain how one might assess the qualities of real time software
- Explain the concept of software reliability
- Explain the exponential model of software reliability
- Explain the reliability curves typically exhibited by software
- Calculate the reliability of a software system at a given time
- Explain how one might measure the 8 qualities of real time software