
Version 0.1 (End of Lab Version) 

Scripting in BASH 

Writing a script 
(More details) 

Put the following into a file (e.g. script.sh) 

#!/bin/bash 
echo "Hello World" 
# other fun 
 
Now, run this command to make it executable 

chmod u+x script 

Now run the script like this: 

./script.sh 

There is a long-standing convention to leave off the .sh suffix from scripts (e.g. just naming the file script 

instead of script.sh)  So you will often see a script invoked as: 

./script 

just like any other program. 

Variables 
Set a variable: 

export myVar="This is a variable"  

Read a variable, printing to standard out: 

echo $myVar 

Increment a Variable 

export =1 

Arguments. 
Suppose we run our script like this: 

./script arg1 arg2 arg3 

And inside the script, we run this command: 

http://linuxcommand.org/wss0010.php#write


Version 0.1 (End of Lab Version) 

echo "argument 3 is: $3" 

  



Version 0.1 (End of Lab Version) 

This will print: 

argument 3 is: arg3 

Quoting 

Quotes are used to group text 
Suppose we run 

./script "this is a test" "of" "arguments" 

The quotes group the words "this is a test" into a single argument, so that when we run this script 

echo "arg1: $1" 
echo "arg2: $2" 
echo "arg3: $3" 
 
will print 

arg1: this is a test 
arg2: of 
arg3: arguments 

Quotes change the interpretation of escape sequences 
In the example from the previous section, 
echo "arg1: $1" 
prints 
 
arg1: this is a test 
 
but  
 
echo 'arg1: $1' 
 
prints 

arg1: $1 

without expanding the $1 with the value of the variable. 

Escapes (e.g. "\\, \n, \r") are also useful. 

Conditionals 
(More details) (UPDATED link at end of lab) 

If  the strings in variables $var1 and $var2 are equal, then print “true”, else print false 

if test "$var1" = "$var2”; then 

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html


Version 0.1 (End of Lab Version) 

 echo "true" 
else 
 echo "false" 
fi 
 

# If file “$var1” exists… 
if test –e "$var1"; then 
 echo "true" 
else 
 echo "false" 
fi 
 

# Using if with a command (not needed for this lab, I suppose) 
if ./myCommand; then 

# … 
else 

# … 
fi 

Loops 
Print out the numbers from one to ten. 

for i in seq `1 10`; do 
 echo $i; 
done; 
 
Keep looping as long as command succeeds. 
 
while command 
 echo "looping" 
done; 
 
Keep looping as long as the command fails. 
while !command 
 echo "looping" 
done; 
 
Keep looping as long as test is “true” 

while test … 
 echo "looping" 
done; 

Arithmetic 
For integer arithmetic, the built-in $(( )) is quite handy. 

(The $ at the start of the lines indicates a command prompt.  You can also use these in a script.) 



Version 0.1 (End of Lab Version) 

$ echo $((1+1)) 
2 
$ export x=1 
$ echo $x 
1 
$ export x=$(($x+1)) 
$ echo $x 
2 
 
For floating-point arithmetic, I usually use bc.  I don’t anticipate needing to do floating-point arithmetic 
in scripts in this class. 

Useful commands 
sleep 0.5 will sleep for half a second 

time command args1 arg2 arg3 

will measure how long it takes 

command arg1 arg2 arg3 to run 

Writing Shell Scripts 
One of the main resources linked from above: 

http://linuxcommand.org/writing_shell_scripts.php 

For if, I like this one better 

 http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html 

Intro to variables (was linked from above, not sure if it is useful for this class) 

 http://www.tldp.org/LDP/abs/html/parameter-substitution.html 

 

 

http://linuxcommand.org/writing_shell_scripts.php
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html
http://www.tldp.org/LDP/abs/html/parameter-substitution.html

