Scripting in BASH

Writing a script
(More details)

Put the following into a file (e.g. script.sh)
#!/bin/bash

echo "Hello World"

other fun

Now, run this command to make it executable
chmod u+x script

Now run the script like this:

./script.sh

There is a long-standing convention to leave off the .sh suffix from scripts (e.g. just naming the file script
instead of script.sh) So you will often see a script invoked as:

./script

just like any other program.

Variables
Set a variable:

export myVar="This is a variable”
Read a variable, printing to standard out:
echo $myVvar

Increment a Variable

export =1

Arguments.
Suppose we run our script like this:

./script argl arg2 arg3

And inside the script, we run this command:

Version 0.1 (End of Lab Version)

http://linuxcommand.org/wss0010.php#write

echo "argument 3 is: $3"

Version 0.1 (End of Lab Version)

This will print:

argument 3 is: arg3

Quoting

Quotes are used to group text
Suppose we run

./script "this is a test" "of" "arguments”

The quotes group the words "this is a test" into a single argument, so that when we run this script
echo "argl: $1"

echo "arg2: $2"

echo "arg3: $3"

will print

argl: this is a test

arg2: of

arg3: arguments

Quotes change the interpretation of escape sequences
In the example from the previous section,

echo "argl: $1"

prints

argl: this is a test

but

echo 'argl: $1°

prints

argl: 51

without expanding the $1 with the value of the variable.

Escapes (e.g. "\\, \n, \r")arealso useful.

Conditionals
(More details) (UPDATED link at end of lab)

If the strings in variables Svarl and Svar2 are equal, then print “true”, else print false
if test "$varl" = "$var2”; then

Version 0.1 (End of Lab Version)

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

echo "true"
else

echo "false"
fi

If file “$varl” exists..
if test -e "$varl"; then
echo "true"
else
echo "false"
fi

Using if with a command (not needed for this lab, I suppose)
if ./myCommand; then

..
else

..
fi
Loops

Print out the numbers from one to ten.

for i in seq "1 10 ; do
echo $i;
done;

Keep looping as long as command succeeds.

while command
echo "looping”
done;

Keep looping as long as the command fails.
while !command

echo "looping"
done;

Keep looping as long as test is “true”
while test ..

echo "looping"
done;

Arithmetic
For integer arithmetic, the built-in $(()) is quite handy.

(The S at the start of the lines indicates a command prompt. You can also use these in a script.)

Version 0.1 (End of Lab Version)

echo $((1+1))

export x=1
echo $x

export x=$(($x+1))
echo $x

N®HBHARPRHBAADNDSH

For floating-point arithmetic, | usually use bc. | don’t anticipate needing to do floating-point arithmetic
in scripts in this class.

Useful commands
sleep 0.5 will sleep for half a second

time command argsl arg2 arg3
will measure how long it takes

command argl arg2 arg3torun

Writing Shell Scripts

One of the main resources linked from above:

http://linuxcommand.org/writing shell scripts.php

For if, | like this one better

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect 07 01.html

Intro to variables (was linked from above, not sure if it is useful for this class)

http://www.tldp.org/LDP/abs/html/parameter-substitution.html

Version 0.1 (End of Lab Version)

http://linuxcommand.org/writing_shell_scripts.php
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html
http://www.tldp.org/LDP/abs/html/parameter-substitution.html

