VHDL Lab Checklist	Name:
CE1911	Lab:

VHDL Design Process

	Yes	No
<i>Includes</i> a block comment at the top of the file with		
Your name		
The class number		
The lab number		
The date		
A brief description of what the file is about		
<i>Includes</i> the IEEE libraries and packages after the block comment		
Names entity and architecture appropriately (no joking with the architecture name!).		
Names signals appropriately.		
Indents everything between the architecture and the begin statement. Aligns the		
architecture with the begin statement. Indents all multi-line structures (e.g. process,		
if, when-else)		
Declares internal signals to hold the finite state machine state		
Uses hand encoding or abstract state types appropriately		
<i>Includes</i> comments to delineate the state register, next state logic, and output logic		
Implements state machines using clear and correct VHDL syntax		
Demonstrates mature use of with-select, when-else, and process syntax		
Completes with-select with when others clause.		
Completes when-else with else X;		
<i>Monitors</i> printed design files for line wraps that make code hard to read. Controls		
lines with breaks around 50 or 60 characters. Inserts line breaks where needed to		
keep code readable		

Design, Simulation, and Test

Examines RTL diagrams during the design process	
Prints RTL to verify an FSM was created	
Creates a simulation for the system	
<i>Includes</i> appropriate waveforms in simulation. Puts inputs above outputs	
Adds reset signal to force FSM into a known starting state	
Clocks sufficient times to ensure simulation provides value	
Implements input waveforms to stimulate the FSM to transition state	
Annotates simulation (and Waveforms if req.) output to verify results	
Demonstrates working circuit in the laboratory environment	

Report

Staples this sheet as a cover. Puts remaining sheets <i>in order</i> : any paper design, VHDL,	
RTL, simulation.	
Total (out of 20)	

Your demo is due during the lab period. Your lab packet is due by 10 AM on the day after the lab is performed. You may do your (late) demonstration after submitting your lab packet if necessary. There is a 1 point per day late penalty on the demo.

The maximum late penalty for the report+demo per day is 2 points. Submit your packet to me during the laboratory or slip it under my office door.

Complete example VHDL Moore Machine

```
-- Josiah Yoder
-- CE1901
-- Lab 4 (In-class prep)
-- 18 Mar 2016
-- Simulates a snail that smiles when it reads 1 0 in sequence from a.
library ieee;
use ieee.std_logic_1164.all;
entity snail is
      port(
            a: in std logic; -- will read one value at a time from here
            clock: in std_logic;
            rstn: in std_logic; -- asynch reset
            y: out std_logic -- 1 for smiling
      );
end entity;
architecture internals of snail is
      type statetype is (nothing, have1, have10);
      signal state: statetype;
      signal nextstate: statetype;
begin
      -- state register
      process(clock,rstn)
      begin
            if rstn = '0'
                  state <= nothing;</pre>
            elsif rising_edge(clock)
            then
                  state <= nextstate;</pre>
            end if;
      end process;
      -- next state logic
      nextstate <=
            have1 when (a='1') else
            nothing when (a='0' and (state=nothing or state=have10)) else
            have10; -- when (a='0' and state=have1)
      -- output logic
      y <=
            '1' when state=have10 else
            '0';
end architecture;
```