MSOE EECS Department CS498: Week 3 Lab Grading Checklist Dr. Yoder Name:

Item	Points
Introduction: Describe the lab in your own words (You may use the space	/ 1
below)	
Include all m-files in this order: createFilters.m, filterStack.m,	/ 1
findDiffOfGaussianStack.m, findGoodExtrema.m, findFeaturePoints.m	, –
(optional), sift.m (your top-level script). Any other m-files you created can	
be inserted where appropriate	
Code <i>follows</i> the comments in the provided .m file documentation	/ 1
templates, with minor edits to describe your code's deviations from them	
Code <i>follows</i> good style (properly indented, meaningful variable names,	/ 1
clean loops,)	
createFilters implemented correctly	/ 2
filterStack <i>implemented</i> correctly	/ 2
findDiffOfGaussianStack implemented correctly	/ 1
findGoodExtrema <i>implemented</i> correctly	/ 3
findFeaturePoints (optional)	/ 0
How does the SIFT interest-point detection achieve illumination invariance?	/ 1
How does the SIFT interest-point detection achieve rotation invariance?	/ 1
How does the SIFT interest-point detection achieve scale invariance?	/ 1
	,
Include your original image	/1
Include your image with interest-points overlaid	/ 1
Summarize what you learned during this lab (You may use the space below)	/ 1
Things you liked about the lab or suggestions for improvement	/1
	/ 1
Follow submission instructions below	1 1
Follow submission instructions below	/ 1
Total	/ 20
IOLAI	/ 20

- **Staple** this lab cover sheet on top of all the materials you are submitting.
- Submit your work in the *order* listed above.
- In addition to the materials above, submit any other supporting materials you create while working the lab where they fit best in your report.
- Your demo is due during the lab period. Your lab packet is due by 8 AM on the day after the lab is performed. You must demo your lab to complete it. The late penalty for completing the lab is 2 points per day. Slip your submitted lab packet under my office door or submit your packet to me during the laboratory. There is a 1 point cost for each demo attempt.