
 Name:

Week 7, Thursday (Spring 2013). Dr. Yoder. Sec 011. 1 of 5

CS2852 Exam 2

No note-sheets, calculators, or other study aids on this exam. Write your name on all pages and

read through the exam before you get started. The exam is printed double-sided.

Throughout the exam, write concisely and underline key words or phrases.

Have fun!

Week 4, Wednesday (Spring 2013). Dr. Yoder. Sec 011. 2 of 5

1. [20 points total] Consider the following expression “2 * (5 + 6)”.

a. (5 points) Draw a tree representation of this expression.

b. (5 points) Following a post-order traversal, write a program-snippet that computes

this expression. Instead of using elementary operators (*, +, etc.), use the following

methods that are defined in “this” class.

void push(int) – push an integer onto the stack

void multiply() – pull two ints off the stack, multiply them, and push the result.

void add() – pull two ints off the stack, add them, and push the result.

c. (5 points) Illustrate what the stack will hold immediately before calling “multiply” (for

the first time, if you use multiple calls).

d. (5 pts) Illustrate what the stack will hold immediately before calling “add” (for the first

time, if you use multiple calls).

 Name:

Week 7, Thursday (Spring 2013). Dr. Yoder. Sec 011. 3 of 5

[30 pts total]

2. (5 points) You can look at the element about to come out of a Queue using either the element()

or the peek() method. Explain the difference between these methods.

3. (10 points) Explain why an ArrayList<E> is not an appropriate choice when implementing a

pure queue interface like the one we wrote in class.

4. (15 points) Illustrate a circular queue of capacity 10 that has had the following elements added

to it in order: 7, -5, 0, 3, 8, 2, followed by removing 2 elements. Be sure that your illustration

makes clear which element is at the front of the queue. You do not need to follow the full

memory-map diagram used in class. You can show an array as, e.g. and an

ArrayList as without needing to explicitly show references, the call stack,

etc.

7 -3 11

7 -3 11

Week 4, Wednesday (Spring 2013). Dr. Yoder. Sec 011. 4 of 5

5. [25 points total]

a. (20 points) Write a recursive implementation of an in-order traversal of a binary tree.

Print the tree as you traverse it. You may assume the inner Node class has left, right,

and value instance variables.

[Can do pre- or post-order traversal and state this for nearly full credit.]

b. (5 points) In Big-O Notation, write the order of everything in one call to your recursive

method, excluding the Big-O cost of recursive calls to itself. In other words, you should

count the cost of all operations in the method except for the lines where the recursive

algorithm calls itself. Explain your answer.

 Name:

Week 7, Thursday (Spring 2013). Dr. Yoder. Sec 011. 5 of 5

 [25 pts total]

6. (5 points) Draw a binary tree that is complete but not full.

7. (5 points) Explain why you would use the Java API Queue methods that throw exceptions if you

wanted to store a “null” in the Queue.

8. (5 points) Explain how you could write your code to use the remove() method in the Queue

interface, not catch the exceptions thrown by it, and yet not crash.

9. (5 points) Explain why the binary search algorithm for a sorted array requires significantly

fewer comparisons in the worst case than the search algorithm for an unsorted array.

10. (5 points) Is a queue or a stack LIFO? Explain your answer.

