
 Winter 2015-2016 Dr. Yoder, Page 1 of 2

SE2811 Half-exam 1 Name:

This is a 25-minute, 100-point half-exam. The exam is printed double sided. If you use a note-sheet

(prepared by yourself), please turn it in with your exam.

1. (10 points) Write the notifyObservers() method for a Subject class in the Observer pattern.

You do not need to use exact names for other methods and variables. Assume push to

observers rather than observer pull.

public void notifyObservers(double position) {

}

2. (10 points) Consider an application with a single Car class containing both the code for

managing observers and for modeling the motion of the car. Now imagine that that code is

separated into two classes: An abstract class for managing the observers, and a concrete

class for modeling the motion of the car. Circle one option below and explain how that term

describes the improvement in the program when moving to the second version.

a. Increases coupling

b. Decreases coupling

c. Increases cohesion

d. Decreases cohesion

3. (10 points) Re-write the code

SwingUtilities.invokeLater(()->label.setText("Complete"));

to use the full anonymous inner class syntax instead of a lambda expression. Recall that

invokeLater takes a Runnable as an argument, and Runnable has a single method run().

SwingUtilities.invokeLater(

);

4. (10 points) Explain why SwingUtilities.invokeLater must be used instead of a

synchronized block in a multithreaded GUI application.

 Winter 2015-2016 Dr. Yoder, Page 2 of 2

5. (10 points) You are working on a (physical) architecture program that allows the user to

design a building, and view it in multiple ways – floor plan, photo-realistic, floor plan,

electrical wiring, etc. If the user moves a wall in the view floor plan, that wall should to

move in the other views as well. Circle one pattern and explain how it allows you to reduce

the coupling between the floor plan and the other views.

a. Strategy

b. Factory Method

c. Singleton

d. Observer

6. (40 points) Consider both the UML diagram and existing code. Revise your parts to this

problem to be consistent with each other. We desire to extend the Pinball machine to

incorporate different kinds of gravity. Each ball will experience different gravity. Some may

fall down. Others may fall to the right. Others may be attracted to some "planet" on the

screen. Use the strategy pattern to rewrite this code.

a. Rewrite the UML diagram to allow balls that fall down or to the right. Include any

methods that you use in part b in the diagram.

b. Edit the method below to encapsulate what varies.

 public void move() {

 if(isOffBottom() || isOffTop()) {

 increment.y = -increment.y; // bounce off bottom

 }

 if(isOffLeft() || isOffRight()) {

 increment.x = -increment.x; // bounce off side

 }

 currentPos.x += increment.x; // increment the position of the duck

 currentPos.y += increment.y;

 increment.y++; // acceleration downwards.

 setLocation(currentPos); // ...and update its location in the container

 }

class he1_16q2_pinball_v 2

JComponent

Ball

- currentPos: Point

- increment: Point

+ Ball()

+ isOffBottom(): boolean

+ isOffLeft(): boolean

+ isOffRight(): boolean

+ isOffTop(): boolean

+ move(): void

