
SE2811. Winter 2015-2016 Dr. Yoder Page 1 of 2 

Half Exam 1    Name: 

This is a 25-minute exam. The exam is printed double sided. If you use a note-sheet (prepared by yourself), 

please turn it in with your exam. 

1. (10 point) Describe the difference between Coupling and Cohesion. Make clear which is which, and 

make clear what “higher” means for each. 

 

 

 

 

2. (20 points) Re-write the code 

javax.swing.Timer timer = new javax.swing.Timer(1000, 

label.setText(“”+new Date() ) ); 

to use the full anonymous inner class syntax instead of a lambda expression.  Recall that a timer 

takes an EventListener as an argument, which has a single method void 

actionPerformed(ActionEvent e); 

 

 

 

 

 

 

 

 

3. (20 points) Draw a UML diagram for a weather app that has multiple “views” of the weather that 

update each time the weather changes.  Use the Observer pattern. Include all classes, class names, 

and relationships.  Annotate interfaces and abstract classes. You do not need to include method 

names. 

  



SE2811. Winter 2015-2016 Dr. Yoder Page 2 of 2 

4. (10 points) Describe how programming to an interface makes code more extensible.  Use the 

definition of programming to an interface from class.  

 

 

 

 

5. (40 points) The following method is part of a web-page search tool.  It uses an insertion sort to 

place each web-page in the right spot in the list. 

a. Edit the following code to extend the method to use the strategy pattern to allow pages to 

be ranked in different ways (see part b).   pages is an instance variable holding all the 

pages that this engine can search. 

    public List<Page> search(String query                                ) { 

        List<Page> results = new ArrayList<>(); 

        for(int oldIndex = 0; oldIndex < pages.size(); oldIndex++) { 

            int resIndex = 0; 

            Page page = pages.get(oldIndex);  

            while (resIndex < results.size() 

                    && page.numMatchingWords(query) <= 

results.get(resIndex).numMatchingWords(query)) { 

                newIndex++; 

            } 

            results.add(newIndex, page); 

        } 

        return results; 

    } 

 

b. Write the interface used by your code above. 

 


