
Winter 2017-2018 Sec 011 Dr. Yoder Page 1 of 2

Half-Exam 1 Name:

No note-sheets, calculators, etc. on this exam. Please read the whole exam before you get started.

1. (30 points) Consider the diagram below. To synthesize a complete song, the guitar

synthesizes each note from the song and concatenates the sounds together. Edit the

diagram below so that the Guitar can change its behavior for synthesizing notes. Sometimes,

it will synthesize each note using a simple Pluck and sometimes using a Strum (rubbing

over the strings many times for a single note). In the future, other behaviors may be added

like Pitch Bend (moving the fingers on the frets to slide the pitch during the note), but you

do not need to include this behavior. Be sure to include a method that allows the

synthesizing behavior to change. Edit the UML diagram in detail to illustrate the Strategy

Pattern.

2. (10 points) Consider a Vehicle class with make, model, year, and VIN (Vehicle Identification

Number) fields. Circle one: this is a Domain Object / an Attribute. Explain your choice.

3. (10 points) Consider a GpsCoordinates class with latitude and longitude fields. Circle one:

this is a Domain Object / an Attribute. Explain your choice.

class Class

Guitar

+ synth(Note): Sound
+ synthSong(): Sound

Song

+ nextNote(): Note

Winter 2017-2018 Sec 011 Dr. Yoder Page 2 of 2

4. (10 points) Describe cohesion and coupling in your own words, making clear which is

which.

5. (20 points) Give a code example illustrating coupling.

6. (20 points) Consider the partial implementation of the Adapter pattern illustrated on the

right below. The adapter is meant to allow the FreePdf to replace the PayPerPrint pdf.

However, the transition to the adapter is not complete. Edit the Report code shown on the

left below to illustrate programming to an interface. Your solution should allow the Report

to more easily be edited to use other adapters in the future.

public class Report {

 private PayPerPrint printer;

 public Report(PayPerPrint p) {

 this.printer = p;

 }

 public void print(){/*…*/}

}

class Class

Report

+ print(): void

PayPerPrint

+ drawPolygon(vertices: List<Point>): void

FreePdf

+ drawTo(point: Point): void
+ moveTo(point: Point): void

«interface»
GenericPdf

+ drawPolygon(vertices: List<Point>): void

FreePdfAdapter

+ drawPolygon(vertices: List<Point>): void

